- 1. Let (X, x_0) , (Y, y_0) be path connected spaces such that $\pi_1(X, x_0) = 0$ and $\pi_n(Y, y_0) = 0$ for n > 1. Show that the space $Z = X \times Y$ is n-simple for all n > 1.
- 2. Show that if $p: E \to B$ is a Serre fibration and B is a path connected space then p is onto.
- 3. Given a Serre fibration $F \xrightarrow{i} E \xrightarrow{p} B$, use the homotopy lifting property to define an action of $\pi_1(E)$ on $\pi_n(F)$, that is a homomorphism from $\pi_1(E)$ to $\operatorname{Aut}(\pi_n(F))$ the group of automorphisms of $\pi_n(F)$, such that the composition $\pi_1(F) \xrightarrow{i_*} \pi_1(E) \to \operatorname{Aut}(\pi_n(F))$ is the usual action of $\pi_1(F)$ on $\pi_n(F)$. As a consequence, if $i: F \to E$ is an inclusion of the fiber of a Serre fibration and $\pi_1(E) = 0$ then F must be a simple space.
- **4.** Given maps $p: E \to B$ and $f: X \to B$ the *pullback* of p along f is the space $f^*E \subseteq X \times E$ given by

$$f^*E = \{(x, e) \in X \times E \mid f(x) = p(e)\}$$

Consider the map $p': f^*E \to X$ given by p'(x, e) = x. Show that if p is a Hurewicz (or Serre) fibration then p' is a Hurewicz (or, respectively, Serre) fibration.

5. Let $p: E \to B$ be a Serre fibration. Show that if B is a path connected space then for any $b_0, b_1 \in B$ we have $\pi_n(p^{-1}(b_0)) \cong \pi_n(p^{-1}(b_1))$ for all $n \ge 0$.

Hint. Show this first assuming that B is a contractible space. In the case of a general Serre fibration $p: E \to B$, take a path $\omega: [0,1] \to B$ such that $\omega(i) = b_i$ for i = 0,1 and consider the fibration $p': \omega^*E \to [0,1]$ defined as in problem 4.