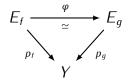
1. Recall that if $f: X \to Y$ is a map then we can replace it by a Hurewicz fibration $p_f: E_f \to Y$ where

$$E_f = \{(x, \omega) \in X \times PY \mid f(x) = \omega(0)\} \subseteq X \times PY$$

and $p_f(x, \omega) = \omega(1)$. Let $f, g: X \to Y$ be maps such that $f \simeq g$. Show that there exists a homotopy equivalence $\varphi: E_f \to E_g$ such that the following diagram commutes:



- 2. Given maps $i: A \to X$ and $f: A \to Y$ define $X \cup_f Y = X \sqcup Y / \sim$ where $i(a) \sim f(a)$ for all $a \in A$. Show that if i is a cofibration then so is the the map $j: Y \to X \cup_f Y$.
- 3. Let $i: A \to X$ be a cofibration of compact Hausdorff spaces. Show that for any space Y the induced map

$$i^*$$
: Map $(X, Y) \rightarrow Map(A, Y)$

is a Hurewicz fibration.

- 4. Consider the 3-dimensional torus $T=S^1\times S^1\times S^1$ as CW complex with a single 3-dimensional cell, and let $T^{(2)}$ be its 2-skeleton. The quotient space $T/T^{(2)}$ is then homeomorphic to the sphere S^3 , so we can regard the quotient map $T\to T/T^{(2)}$ as a map $f\colon T\to S^3$. Since the induced homomorphism of homology groups $f_*\colon H_3(T)\to H_3(S^3)$ is an isomorphism, the map f is not homotopic to the constant map. Consider the composition $g=pf\colon T\to S^2$ where $p\colon S^3\to S^2$ is the Hopf fibration. Show that the map g_* induces trivial homomorphisms on all homotopy groups, homology groups and cohomology groups, but it is not homotopic to the constant map. (Hint: show that if there was a homotopy $g\simeq *$ they we would also have a homotopy $f\simeq *$)
- **5.** Prove Proposition 11.3.