20 | Serre Spectral Sequence

The Serre spectral sequence is a special case of the spectral sequence associated to a filtration described in Theorem 19.9.

20.1 Definition. Let $p: E \to B$ is a Serre fibration where B is a connected CW complex. Let

$$\varnothing = B^{(-1)} \subseteq B^{(0)} \subseteq \dots B$$

be the filtration of B by skeleta. Taking $E^p := p^{-1}(B^{(k)})$ we obtain a filtration of the space E:

$$\emptyset = E^{-1} \subseteq E^0 \subseteq \ldots \subseteq E$$

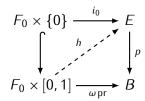
The Serre spectral sequence of the fibration p is the spectral sequence associated to this filtration.

By Theorem 19.9 we get that $E_{p,q}^1 = H_{p+q}(E^p, E^{p-1})$ and that E_{**}^r converges to $H_*(E)$. The advantage of the Serre spectral sequence is that we can explicitly describe its second page:

20.2 Theorem. Let E_{**}^r be the Serre spectral sequence of a fibration $p \colon E \to B$. Let $F = p^{-1}(b_0)$ for some $b_0 \in B$. If the space B is simply connected then $E_{p,q}^2 \cong H_p(B,H_q(F))$.

While we will skip the proof of this result, it is useful to point out that the assumption that B is simply connected is needed in order to obtain a canonical identification between fibers of p taken over different points. Assume for a moment p is a Hurewicz fibration and that $b_0, b_1 \in B$, Let $F_i = p^{-1}(b_i)$

for i=0,1. Given a path $\omega:[0,1]\to B$ such that $\omega(0)=b_0$ $\omega(1)=b_1$, consider the diagram

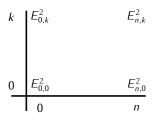


where pr: $F_0 \times [0,1] \to [0,1]$ is the projection map and $i_0 \colon F_0 \to E$ is the inclusion. A lift h of ω pr gives a homotopy in E between the map i_0 and a certain map $h_1 \colon F_0 \to F_1$. One can show that this map h_1 is a homotopy equivalence and that its homotopy class depends only on the homotopy class of the path ω (relative its endpoints). If the space B is simply connected, all paths joining b_0 and b_1 are homotopic, so the homotopy class of h_1 is uniquely defined. In particular, we obtain canonical isomorphisms of homology groups $h_{1*} \colon H_q(F_0) \xrightarrow{\cong} H_q(F_1)$. If p is a Serre fibration, we can use the same argument, but in order to get the lift h we replace F_0 by its CW approximation.

We have seen already one application of the Serre spectral sequence in Theorem 18.7. Here is another one:

20.3 Proposition. Let $S^k \to S^m \xrightarrow{p} S^n$ be a homotopy fibration sequence with $n \ge 1$. Then k = n - 1 and m = 2n - 1.

Proof. If n=1 then the long exact sequence of homotopy groups shows that we must have m=1 and k=0. Assume then that $n\geq 2$. Consider the Serre spectral sequence of this fibration. Its second page $E_{p,q}^2\cong H_p(S^n,H_q(S^k))$ has only four non-zero terms, all isomorphic to \mathbb{Z} :



All differentials originating and terminating at $E_{0,0}^r$ and $E_{k,n}^r$ are trivial, so $E_{0,0}^2 = E_{0,0}^\infty$ and $E_{n,k}^2 = E_{n,k}^\infty$. The page E_{**}^∞ can have non-zero terms $E_{p,q}^\infty$ only if (p,q)=(0,0) or p+q=m. It follows that k+n=m. The terms $E_{0,k}^2$ and $E_{n,0}^2$ must kill each other, so they must be connected by a differential. This is possible only if k=n-1. Taken together these observations imply that p is a fibration sequence of the form $S^{n-1} \to S^{2n-1} \stackrel{p}{\to} S^n$.

Hopf bundles give examples of fibration sequences $S^{n-1} \to S^{2n-1} \to S^n$ for n = 1, 2, 4, 8. A theorem of Adams implies that these are the only fibration sequences where all three spaces are spheres.